Coupling of Dirichlet-to-Neumann boundary condition and finite difference methods in curvilinear coordinates for multiple scattering
نویسندگان
چکیده
The applicability of the Dirichlet-to-Neumann technique coupled with finite difference methods is enhanced by extending it to multiple scattering from obstacles of arbitrary shape. The original boundary value problem (BVP) for the multiple scattering problem is reformulated as an interface BVP. A heterogenous medium with variable physical properties in the vicinity of the obstacles is considered. A rigorous proof of the equivalence between these two problems for smooth interfaces in two and three dimensions for any finite number of obstacles is given. The problem is written in terms of generalized curvilinear coordinates inside the computational region. Then, novel elliptic grids conforming to complex geometrical configurations of several two-dimensional obstacles are constructed and approximations of the scattered field supported by them are obtained. The numerical method developed is validated by comparing the approximate and exact far-field patterns for the scattering from two circular obstacles. In this case, for a second order finite difference scheme, a second order convergence of the numerical solution to the exact solution is easily verified. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
SIAM Undergraduate Research Online NUMERICAL WAVE SCATTERING TAKING ACCOUNT OF ENERGY DISSIPATION AND MEDIA STIFFNESS AS MODELED BY THE TELEGRAPH EQUATION
Abstract. The telegraph equation is employed to model wave fields taking into account energy dissipation and media stiffness. The timeharmonic scattered waves generated by a line source incident upon cylindrical obstacles of arbitrary cross-section are studied. Solutions are found to depend strongly on the relative values of the frequency, damping, and stiffness coefficients. These coefficients...
متن کاملSignificant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کاملThermal Development for Ducts of Arbitrary Cross Sections by Boundary-Fitted Coordinate Transformation Method
The non-orthogonal boundary-fitted coordinate transformation method is applied to the solution of steady three-dimensional momentum and energy equations in laminar flow to obtain temperature field and Nusselt numbers in the thermal entry region of straight ducts of different cross sectional geometries. The conservation equations originally written in Cartesian coordinates are parabolized in the...
متن کاملA Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems
In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...
متن کاملDirichlet-to-neumann Boundary Conditions for Multiple Scattering Problems
A Dirichlet-to-Neumann (DtN) condition is derived for the numerical solution of time-harmonic multiple scattering problems, where the scatterer consists of several disjoint components. It is obtained by combining contributions from multiple purely outgoing wave fields. The DtN condition yields an exact nonreflecting boundary condition for the situation, where the computational domain and its ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 229 شماره
صفحات -
تاریخ انتشار 2010